BMP180 ohne Bibliothek - AZ-Delivery

Heute wollen wir eine interessante Möglichkeit aufzeigen unseren BMP180 ohne extra Libary anzusteuern. Durch den verbauten Festspannungsregler ist unser BMP sowohl mit 3.3V als auch mit 5V kompatibel, allerdings werden die Werte unterschiedlich kalkuliert, so dass folgender Sketch nur mit 5V die richtigen Werte ausgibt. Die Verkabelung ist einfach:

und der dazugehörgie Code:

 

/*Based largely on code by  Jim Lindblom

 Get pressure, altitude, and temperature from the BMP180.
 Serial.print it out at 9600 baud to serial monitor.
 */

#include <Wire.h>

#define BMP180_ADDRESS 0x77  // I2C address of BMP180

const unsigned char OSS = 0;  // Oversampling Setting

// Calibration values
int ac1;
int ac2;
int ac3;
unsigned int ac4;
unsigned int ac5;
unsigned int ac6;
int b1;
int b2;
int mb;
int mc;
int md;

// b5 is calculated in bmp180GetTemperature(...), this variable is also used in bmp180GetPressure(...)
// so ...Temperature(...) must be called before ...Pressure(...).
long b5; 

void setup(){
  Serial.begin(9600);
  Wire.begin();

  bmp180Calibration();
}

void loop()
{
  float temperature = bmp180GetTemperature(bmp180ReadUT()); //MUST be called first
  float pressure = bmp180GetPressure(bmp180ReadUP());
  float atm = pressure / 101325; // "standard atmosphere"
  float altitude = calcAltitude(pressure); //Uncompensated caculation - in Meters 

  Serial.print("Temperature: ");
  Serial.print(temperature, 2); //display 2 decimal places
  Serial.println("deg C");

  Serial.print("Pressure: ");
  Serial.print(pressure, 0); //whole number only.
  Serial.println(" Pa");

  Serial.print("Standard Atmosphere: ");
  Serial.println(atm, 4); //display 4 decimal places

  Serial.print("Altitude: ");
  Serial.print(altitude, 2); //display 2 decimal places
  Serial.println(" M");

  Serial.println();//line break

  delay(1000); //wait a second and get values again.
}

// Stores all of the bmp180's calibration values into global variables
// Calibration values are required to calculate temp and pressure
// This function should be called at the beginning of the program
void bmp180Calibration()
{
  ac1 = bmp180ReadInt(0xAA);
  ac2 = bmp180ReadInt(0xAC);
  ac3 = bmp180ReadInt(0xAE);
  ac4 = bmp180ReadInt(0xB0);
  ac5 = bmp180ReadInt(0xB2);
  ac6 = bmp180ReadInt(0xB4);
  b1 = bmp180ReadInt(0xB6);
  b2 = bmp180ReadInt(0xB8);
  mb = bmp180ReadInt(0xBA);
  mc = bmp180ReadInt(0xBC);
  md = bmp180ReadInt(0xBE);
}

// Calculate temperature in deg C
float bmp180GetTemperature(unsigned int ut){
  long x1, x2;

  x1 = (((long)ut - (long)ac6)*(long)ac5) >> 15;
  x2 = ((long)mc << 11)/(x1 + md);
  b5 = x1 + x2;

  float temp = ((b5 + 8)>>4);
  temp = temp /10;

  return temp;
}

// Calculate pressure given up
// calibration values must be known
// b5 is also required so bmp180GetTemperature(...) must be called first.
// Value returned will be pressure in units of Pa.
long bmp180GetPressure(unsigned long up){
  long x1, x2, x3, b3, b6, p;
  unsigned long b4, b7;

  b6 = b5 - 4000;
  // Calculate B3
  x1 = (b2 * (b6 * b6)>>12)>>11;
  x2 = (ac2 * b6)>>11;
  x3 = x1 + x2;
  b3 = (((((long)ac1)*4 + x3)<<OSS) + 2)>>2;

  // Calculate B4
  x1 = (ac3 * b6)>>13;
  x2 = (b1 * ((b6 * b6)>>12))>>16;
  x3 = ((x1 + x2) + 2)>>2;
  b4 = (ac4 * (unsigned long)(x3 + 32768))>>15;

  b7 = ((unsigned long)(up - b3) * (50000>>OSS));
  if (b7 < 0x80000000)
    p = (b7<<1)/b4;
  else
    p = (b7/b4)<<1;

  x1 = (p>>8) * (p>>8);
  x1 = (x1 * 3038)>>16;
  x2 = (-7357 * p)>>16;
  p += (x1 + x2 + 3791)>>4;

  long temp = p;
  return temp;
}

// Read 1 byte from the BMP180 at 'address'
char bmp180Read(unsigned char address)
{
  unsigned char data;

  Wire.beginTransmission(BMP180_ADDRESS);
  Wire.write(address);
  Wire.endTransmission();

  Wire.requestFrom(BMP180_ADDRESS, 1);
  while(!Wire.available())
    ;

  return Wire.read();
}

// Read 2 bytes from the BMP180
// First byte will be from 'address'
// Second byte will be from 'address'+1
int bmp180ReadInt(unsigned char address)
{
  unsigned char msb, lsb;

  Wire.beginTransmission(BMP180_ADDRESS);
  Wire.write(address);
  Wire.endTransmission();

  Wire.requestFrom(BMP180_ADDRESS, 2);
  while(Wire.available()<2)
    ;
  msb = Wire.read();
  lsb = Wire.read();

  return (int) msb<<8 | lsb;
}

// Read the uncompensated temperature value
unsigned int bmp180ReadUT(){
  unsigned int ut;

  // Write 0x2E into Register 0xF4
  // This requests a temperature reading
  Wire.beginTransmission(BMP180_ADDRESS);
  Wire.write(0xF4);
  Wire.write(0x2E);
  Wire.endTransmission();

  // Wait at least 4.5ms
  delay(5);

  // Read two bytes from registers 0xF6 and 0xF7
  ut = bmp180ReadInt(0xF6);
  return ut;
}

// Read the uncompensated pressure value
unsigned long bmp180ReadUP(){

  unsigned char msb, lsb, xlsb;
  unsigned long up = 0;

  // Write 0x34+(OSS<<6) into register 0xF4
  // Request a pressure reading w/ oversampling setting
  Wire.beginTransmission(BMP180_ADDRESS);
  Wire.write(0xF4);
  Wire.write(0x34 + (OSS<<6));
  Wire.endTransmission();

  // Wait for conversion, delay time dependent on OSS
  delay(2 + (3<<OSS));

  // Read register 0xF6 (MSB), 0xF7 (LSB), and 0xF8 (XLSB)
  msb = bmp180Read(0xF6);
  lsb = bmp180Read(0xF7);
  xlsb = bmp180Read(0xF8);

  up = (((unsigned long) msb << 16) | ((unsigned long) lsb << 8) | (unsigned long) xlsb) >> (8-OSS);

  return up;
}

void writeRegister(int deviceAddress, byte address, byte val) {
  Wire.beginTransmission(deviceAddress); // start transmission to device 
  Wire.write(address);       // send register address
  Wire.write(val);         // send value to write
  Wire.endTransmission();     // end transmission
}

int readRegister(int deviceAddress, byte address){

  int v;
  Wire.beginTransmission(deviceAddress);
  Wire.write(address); // register to read
  Wire.endTransmission();

  Wire.requestFrom(deviceAddress, 1); // read a byte

  while(!Wire.available()) {
    // waiting
  }

  v = Wire.read();
  return v;
}

float calcAltitude(float pressure){

  float A = pressure/101325;
  float B = 1/5.25588;
  float C = pow(A,B);
  C = 1 - C;
  C = C /0.0000225577;

  return C;
}

So kann der BMP180 ressourcensparend eingesetzt werden und der Code ist für fortgeschrittene Benutzer leicht für andere Atmel Controller adaptierbar.

 

Für arduinoProjekte für anfängerSensoren

1 Kommentar

Achim

Achim

Erst einmal danke für den Beispiel-Code.
Zitat “ist unser BMP sowohl mit 3.3V als auch mit 5V kompatibel, allerdings werden die Werte unterschiedlich kalkuliert”.

Wenn auf der Platine ein Festspannungsregler ist, frage ich mich, warum die Werte unterschiedlich kalkuliert werden?

Kommentar hinterlassen

Alle Kommentare werden von einem Moderator vor der Veröffentlichung überprüft

Empfohlene Blogbeiträge

  1. ESP32 jetzt über den Boardverwalter installieren - AZ-Delivery
  2. Internet-Radio mit dem ESP32 - UPDATE - AZ-Delivery
  3. Arduino IDE - Programmieren für Einsteiger - Teil 1 - AZ-Delivery
  4. ESP32 - das Multitalent - AZ-Delivery